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Some definitions



Polar spaces

Partial linear space

A partial linear space is a point-line structure 〈S ,L〉, where the
elements of S are called points, the elements of L are called lines,
and where L ⊂ 2S , if two distinct lines share at most one point
and every line is of size (cardinality) at least 2.

One-or-all axiom

A point p, not on a line L, is collinear with one or all points of L.
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Polar space

A polar space is a partial linear space satisfying one-or-all axiom.
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Pencils

V – a vector space of dimension n with 3 ≤ n < ∞
Subk(V ) – the set of all k-dimensional subspaces of V

For H ∈ Subk−1(V ), B ∈ Subk+1(V ) with H ⊂ B a pencil of
k-subspaces is a set of the form

p(H,B) :=
{
U ∈ Subk(V ) : H ⊂ U ⊂ B

}
.
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Polar Grassmann spaces

ξ – nondegenerate reflexive sesquilinear form of index r on V

Qk :=
{
U ∈ Subk(V ) : ξ(U,U) = 0

}
The incidence structure 〈Q1,Q2〉 is a polar space.

A point-line structure

Pk(Q) :=
〈
Qk , Pk(Q)

〉
,

where Pk(Q) is the family of all pencils of totally isotropic
k-subspaces, is a polar Grassmann space.
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Strong subspaces in the polar Grasmann space Pk(Q)

Every strong subspace is a projective space P.

There are two disjoint classes of maximal strong subspaces:

class representative subspace dim(P)

stars [H,Y ]k : H ∈ Qk−1,Y ∈ Qr ,H ⊂ Y r − k

tops [Θ,B]k : B ∈ Qk+1 k

Every line can be uniquely extended to a top but it is contained
in more than one star.
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New pointset, lineset and natural parallelizm

W – a fixed subspace of V , rW = ind(ξ
∣∣W )

m – a fixed integer such that m ≤ rW ≤ r − k + m

New pointset:

Fk,m(Q,W ) :=
{
U ∈ Qk : dim(U ∩W ) = m

}
If p ∈ Pk(Q), then∣∣p ∩ Fk,m(Q,W )

∣∣ ∈ {0, 1} or |p \ Fk,m(Q,W )| ∈ {0, 1}.

New lineset:

Gk,m(Q,W ) :=
{
p ∩ Fk,m(Q,W ) : p ∈ Pk(Q), |p ∩ Fk,m(Q,W )| ≥ 2

}
Natural parallelizm for L1, L2 ∈ Gk,m(Q,W ):

L1 ‖ L2 : ⇐⇒ L∞1 = L∞2
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Polar spine spaces

A point-line structure

M := Ak,m(Q,W ) := 〈Fk,m(Q,W ),Gk,m(Q,W ), ‖〉.
is a polar spine space.

Lines of a polar spine space fall into three disjoint classes:

class representative line L = p(H, B) ∩ Fk,m(Q, W ) L∞

affine H ∈ Fk−1,m(Q, W ), B ∈ Fk+1,m+1(Q, W ) H + (B ∩W )

α-projective H ∈ Fk−1,m(Q, W ), B ∈ Fk+1,m(Q, W ) –

ω-projective H ∈ Fk−1,m−1(Q, W ), B ∈ Fk+1,m+1(Q, W ) –

L := Gk,m(Q,W )
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Strong subspaces in the polar spine space Ak,m(Q, W )

Every strong subspace of a polar spine space is a slit space, that
is a projective space P with a subspace D removed.

There are four disjoint classes of maximal strong subspaces:

class representative subspace

dim(P) dim(D)

ω-star [H, (H + W ) ∩ Y ]k : H ∈ Fk−1,m−1(Q, W ), Y ∈ Qr , H ⊂ Y

dim(W ∩ Y )−m -1

α-star [H, Y ]k ∩ Fk,m(Q, W ) : H ∈ Fk−1,m(Q, W ), Y ∈ Qr , H ⊂ Y

r − k dim(W ∩ Y )−m − 1

α-top [B ∩W , B]k : B ∈ Fk+1,m(Q, W )

k −m -1

ω-top [Θ, B]k ∩ Fk,m(Q, W ) : B ∈ Fk+1,m+1(Q, W )

k k −m − 1
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Intersections of stars and tops in a polar spine space

Lemma

A star and a top are disjoint, share a point or a line except an
ω-star and an α-top that are disjoint or share a point. Two distinct
tops are disjoint or share a point. Two distinct stars are disjoint or
share a point, a line, a plane and so on up to a hyperplane.

ω-star α-star α-top ω-top

ω-star any ∅, point ∅, point
m = 0 → ∅, point
m > 0 → ∅, point, line

α-star any ∅, point, line ∅, point, line

α-top ∅, point, equal ∅, point

ω-top ∅, point, equal
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Coplanarity and copencility

A plane in M is a 2-dimensional strong subspace in M.

Coplanarity

L1 π L2 iff there is a plane E such that L1, L2 ⊂ E

For a plane E in M and U ∈ E , the set

p(U,E ) :=
{
L ∈ L : U ∈ L ⊂ E

}
is a proper pencil if U is proper, or a parallel pencil otherwise.

Copencility

L1 ρ L2 iff there is a proper pencil p such that L1, L2 ∈ p
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Our motivations and the goal



The goal

Theorem

Assume that Ak+1,m(Q,W ) is connected and the following two
conditions are satisfied:

4 ≤ k −m

and

rW ≤ m + 3 or rW ≤ k − 2m − 1.

Then the four structures:

the polar spine space M = Ak,m(Q,W ),

the structure P(M) of lines of M and pencils of lines of M,

the structure 〈L,π〉 of lines of M and coplanarity relation,

the structure 〈L,ρ〉 of lines of M and copencility relation,

are pairwise definitionally equivalent.
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How it all is supposed to be achieved



Indispensable π-cliques and ρ-cliques

Flat A set
L(E ) := {L ∈ L : L ⊂ E}

for some plane E in M.

Semiflat The set of all projective lines on a plane E in M

augmented with a maximal set of affine lines on E
such that no two are parallel.

Semibundle A set

LU(X ) := {L ∈ L : U ∈ L and L ⊆ X}

for some strong subspace X of M and U ∈ X .

Tripod Three lines that meet in a point, are pairwise coplanar,
and are not contained in a plane.
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Maximal π-cliques and ρ-cliques

Proposition

A set K is a maximal π-clique iff either

K is a flat or

K is a semibundle determined by at least 3-dimensional star or
top

Proposition

A set K is a maximal ρ-clique iff either

K is a semiflat or

K is a proper semibundle determined by at least 3-dimensional
star or top
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Definability of various π-cliques and ρ-cliques

∆s
δ(L1, L2, . . . , Ls) iff

6= (L1, L2, . . . , Ls), Li δ Lj for all i , j = 1, . . . , s and

for all M1,M2 ∈ L if M1,M2 δ L1, L2, . . . , Ls then M1 δ M2

∆3
π(L1, L2, L3) iff L1, L2, L3 form a tripod or a triangle and are

not contained in two distinct maximal π-cliques

∆3
ρ(L1, L2, L3) iff L1, L2, L3 form a tripod or a triangle, are not

on an affine plane, in case they are on a punctured plane one of
L1, L2, L3 is an affine line, and are not contained in two distinct
maximal π-cliques

[|L1, L2, . . . , Ls |]δ :=
{
L ∈ L : L δ L1, L2, . . . , Ls

}
Ks

δ :=
{
[|L1, L2, . . . , Ls |]δ : L1, L2, . . . , Ls ∈ L and ∆s

δ(L1, L2, . . . , Ls)
}

K. Petelczyc, K. Prażmowski, M. Żynel∗ Geometry on the lines of polar spine spaces



π-cliques spanned by three lines

Lemma

For each maximal π-clique K there is an integer s and there are
lines L1, . . . , Ls ∈ K such that

3 ≤ s ≤ r − k + 1, ∆s
π(L1, . . . , Ls), and K = [|L1, . . . , Ls |]π.

The class of all maximal π-cliques is definable in M:

Kπ :=
⋃ {

Ks
π : 3 ≤ s ≤ r − k + 1

}
.

Lemma

The family K3
π consists of:

(i) flats,

(ii) top semibundles,

(iii) semibundles contained in 3-dimensional stars,

(iv) semibundles contained in special ω-stars which do not
intersect any other star in a 3-dimensional subspace.
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ρ-cliques spanned by three lines

Lemma

The family K3
ρ consists of:

(i) projective flats,

(ii) punctured semiflats,

(iii) proper top semibundles,

(iv) proper semibundles contained in 3-dimensional stars,

(v) proper semibundles contained in special ω-stars.
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Pencils of lines and parallel pencils in M

pπ(L1, L2, L3) iff

L1, L2, L3 ∈ K for some K ∈ K3
π and ¬∆π(L1, L2, L3)

pπ(L1, L2, L3) iff L1, L2, L3 form a pencil of lines or a parallel
pencil that is contained in a top or in a 3-dimensional star or in
a special ω-star

pρ(L1, L2, L3) iff

L1, L2, L3 ∈ K1∩K2 for some flat K1 and K2 ∈ K3
ρ with K2 * K1

pρ(L1, L2, L3) iff L1, L2, L3 form a pencil of lines
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Proper semibundles and proper top semibundles

The family

B0 :=
{
K ∈ Kδ : there is a pencil of lines p such that

p ⊂ K and dim(K ) ≥ 3
}

defined in 〈L, δ〉 coincides with the family of all proper top
semibundles, the family of all proper semibundles contained in
special ω-stars, or the union of these two families depending on
whether tops, stars or all of them as projective or semiaffine spaces
are at least 4-dimensional.

Proper top semibundles B are distinguishable in B0 when:

4 ≤ k −m

and

rW ≤ m + 3 or rW ≤ k − 2m − 1.
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Grouping proper top semibundles into bundles

For Ki = LUi
(Xi ) ∈ B, i = 1, 2 we define:

Υ(K1,K2) iff (∃ L1, L2 ∈ K1)(∃ M1,M2 ∈ K2)[
L1 6= L2 ∧ L1 δ M1 ∧ L2 δ M2

]
.

Lemma

Let Xi be a top and Ki = LUi
(Xi ), i = 1, 2.

If Υ(K1,K2) and K1 ∩ K2 = ∅, then U1 = U2.

K. Petelczyc, K. Prażmowski, M. Żynel∗ Geometry on the lines of polar spine spaces



Grouping proper top semibundles into bundles

All tops are at least 4-dimensional spaces and thus no top is a
punctured polar space.

Lemma

Let Xi = [Θ,Bi ]k be a top and Ki = LUi
(Xi ), i = 1, 2.

If B1 ⊥ B2 and U1 = U2, then Υ(K1,K2) and K1 ∩ K2 = ∅.

Assume that the polar spine space Ak+1,m(Q,W ) is connected.

Let Υ be the transitive closure of Υ.

Lemma

Let Xi be a top and Ki = LUi
(Xi ), i = 1, 2.

If U1 = U2, then Υ(K1,K2) and K1 ∩ K2 = ∅.
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Bundles of lines

Υ∅(K1,K2) iff Υ(K1,K2), Υ(K2,K1), and

either K1 ∩ K2 = ∅ or K1 = K2

Lemma

Υ∅(K1,K2) iff U1 = U2.

For K ∈ B we write

ΛΥ∅
(K ) :=

⋃{
K ′ ∈ B : Υ∅(K ,K ′)

}
.

Lemma

If U is a point and X is a top such that U ∈ X, then

ΛΥ∅
(LU(X )) = {L ∈ L : U ∈ L}.
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Thank you for your attention


