Geometry on the lines of polar spine spaces

Krzysztof Petelczyc kryzpet@math.uwb.edu.pl

Krzysztof Prażmowski krzypraz@math.uwb.edu.pl

Mariusz Żynel* mariusz@math.uwb.edu.pl

> University of Białystok Institute of Mathematics

XIII Północne Spotkania Geometryczne, Białystok 2019

- Some definitions
- Our motivations and the goal
- How it all is supposed to be achieved

Some definitions

Polar spaces

Partial linear space

A partial linear space is a point-line structure $\langle S, \mathcal{L} \rangle$, where the elements of S are called points, the elements of \mathcal{L} are called lines, and where $\mathcal{L} \subset 2^S$, if two distinct lines share at most one point and every line is of size (cardinality) at least 2.

One-or-all axiom

A point p, not on a line L, is collinear with one or all points of L.

Polar space

A polar space is a partial linear space satisfying one-or-all axiom.

K. Petelczyc, K. Prażmowski, M. Żynel* Geometry on the lines of polar spine spaces

Pencils

- V a vector space of dimension n with $3 \le n < \infty$
- $Sub_k(V)$ the set of all k-dimensional subspaces of V

For $H \in \text{Sub}_{k-1}(V)$, $B \in \text{Sub}_{k+1}(V)$ with $H \subset B$ a pencil of k-subspaces is a set of the form

 $\mathbf{p}(H,B) := \{ U \in \mathrm{Sub}_k(V) \colon H \subset U \subset B \}.$

ξ - nondegenerate reflexive sesquilinear form of index r on V
Q_k := {U ∈ Sub_k(V): ξ(U, U) = 0}

The incidence structure $\langle Q_1, Q_2 \rangle$ is a polar space.

A point-line structure

$$\mathsf{P}_k(\mathbf{Q}) := \big\langle \mathbf{Q}_k, \ \mathcal{P}_k(\mathbf{Q}) \big\rangle,$$

where $\mathcal{P}_k(Q)$ is the family of all pencils of totally isotropic *k*-subspaces, is a polar Grassmann space.

Strong subspaces in the polar Grasmann space $P_k(Q)$

- Every strong subspace is a projective space **P**.
- There are two disjoint classes of maximal strong subspaces:

class	representative subspace	$dim(\mathbf{P})$
stars	$[H, Y]_k \colon H \in \mathbf{Q}_{k-1}, Y \in \mathbf{Q}_r, H \subset Y$	<i>r</i> – <i>k</i>
tops	$[\Theta,B]_k\colon B\in \mathrm{Q}_{k+1}$	k

• Every line can be uniquely extended to a top but it is contained in more than one star.

New pointset, lineset and natural parallelizm

•
$$W$$
 – a fixed subspace of V , $r_W = ind(\xi | W)$

• m – a fixed integer such that $m \leq r_W \leq r - k + m$

New pointset:

$$\mathcal{F}_{k,m}(\mathrm{Q},\mathcal{W}):=ig\{U\in\mathrm{Q}_k\colon \dim(U\cap\mathcal{W})=mig\}$$

• If $p \in \mathcal{P}_k(\mathbf{Q})$, then $\left| p \cap \mathcal{F}_{k,m}(\mathbf{Q}, W) \right| \in \{0, 1\}$ or $\left| p \setminus \mathcal{F}_{k,m}(\mathbf{Q}, W) \right| \in \{0, 1\}.$

New lineset:

 $\mathcal{G}_{k,m}(\mathbf{Q}, W) := \big\{ p \cap \mathcal{F}_{k,m}(\mathbf{Q}, W) \colon p \in \mathcal{P}_k(\mathbf{Q}), |p \cap \mathcal{F}_{k,m}(\mathbf{Q}, W)| \geq 2 \big\}$

Natural parallelizm for $L_1, L_2 \in \mathcal{G}_{k,m}(\mathbb{Q}, W)$:

$$L_1 \parallel L_2 : \iff L_1^\infty = L_2^\infty$$

A point-line structure $\mathfrak{M} := \mathbf{A}_{k,m}(\mathbf{Q}, W) := \langle \mathcal{F}_{k,m}(\mathbf{Q}, W), \mathcal{G}_{k,m}(\mathbf{Q}, W), \| \rangle.$ is a polar spine space.

• Lines of a polar spine space fall into three disjoint classes:

class	representative line $L={f p}(H,B)\cap {\cal F}_{k,m}({ m Q},W)$	L^{∞}
affine	$H\in \mathcal{F}_{k-1,m}(\mathrm{Q},W),\;B\in \mathcal{F}_{k+1,m+1}(\mathrm{Q},W)$	$H + (B \cap W)$
α -projective	$H\in \mathcal{F}_{k-1,m}(\mathrm{Q},W),\;B\in \mathcal{F}_{k+1,m}(\mathrm{Q},W)$	-
ω -projective	$H\in \mathcal{F}_{k-1,m-1}(\mathbf{Q},W), \ B\in \mathcal{F}_{k+1,m+1}(\mathbf{Q},W)$	-

• $\mathcal{L} := \mathcal{G}_{k,m}(\mathbf{Q}, W)$

Strong subspaces in the polar spine space $\mathbf{A}_{k,m}(\mathbf{Q}, W)$

- Every strong subspace of a polar spine space is a slit space, that is a projective space **P** with a subspace D removed.
- There are four disjoint classes of maximal strong subspaces:

class	representative subspace		
	$dim(\mathbf{P}) \qquad \qquad dim(\mathcal{D})$		
ω -star	$egin{aligned} [H,(H+W)\cap Y]_k\colon H\in\mathcal{F}_{k-1,m-1}(\mathrm{Q},W), Y\in\mathrm{Q}_r, H\subset Y\ \dim(W\cap Y)-m & -1 \end{aligned}$		
$lpha extsf{-star}$	$ [H, Y]_k \cap \mathcal{F}_{k,m}(\mathbf{Q}, W) \colon H \in \mathcal{F}_{k-1,m}(\mathbf{Q}, W), Y \in \mathbf{Q}_r, H \subset Y \\ r-k \qquad \qquad$		
$\alpha ext{-top}$	$egin{array}{llllllllllllllllllllllllllllllllllll$		
ω-top	$egin{aligned} [\Theta,B]_k \cap \mathcal{F}_{k,m}(\mathrm{Q},W)\colon B\in \mathcal{F}_{k+1,m+1}(\mathrm{Q},W) \ k & igg k-m-1 \end{aligned}$		

Lemma

A star and a top are disjoint, share a point or a line except an ω -star and an α -top that are disjoint or share a point. Two distinct tops are disjoint or share a point. Two distinct stars are disjoint or share a point, a line, a plane and so on up to a hyperplane.

	ω -star	lpha-star	lpha-top	ω -top
ω -star	any	Ø, point	Ø, point	$m = 0 ightarrow \emptyset$, point $m > 0 ightarrow \emptyset$, point, line
lpha-star		any	Ø, point, line	Ø, point, line
lpha-top			\emptyset , point, equal	Ø, point
ω -top				\emptyset , point, equal

• A plane in \mathfrak{M} is a 2-dimensional strong subspace in \mathfrak{M} .

 $L_1 \ \pi \ L_2$ iff there is a plane E such that $L_1, L_2 \subset E$

• For a plane E in \mathfrak{M} and $U \in \overline{E}$, the set

$$\mathbf{p}(U, E) := \left\{ L \in \mathcal{L} \colon U \in \overline{L} \subset \overline{E} \right\}$$

is a proper pencil if U is proper, or a parallel pencil otherwise.

Copencility

Coplanarity

 $L_1 \
ho \ L_2$ iff there is a proper pencil p such that $L_1, L_2 \in p$

Our motivations and the goal

Theorem

Assume that $\mathbf{A}_{k+1,m}(\mathbf{Q}, W)$ is connected and the following two conditions are satisfied:

$$4 \leq k - m$$

and

$$r_W \leq m+3$$
 or $r_W \leq k-2m-1$.

Then the four structures:

- the polar spine space $\mathfrak{M} = \mathbf{A}_{k,m}(\mathbf{Q}, W)$,
- the structure $\mathbf{P}(\mathfrak{M})$ of lines of \mathfrak{M} and pencils of lines of \mathfrak{M} ,
- the structure $\langle \mathcal{L}, \pi
 angle$ of lines of \mathfrak{M} and coplanarity relation,
- the structure $\langle \mathcal{L}, \rho \rangle$ of lines of \mathfrak{M} and copencility relation, are pairwise definitionally equivalent.

How it all is supposed to be achieved

Indispensable π -cliques and ρ -cliques

Flat A set

$$\mathsf{L}(E) := \{ L \in \mathcal{L} \colon L \subset E \}$$

for some plane E in \mathfrak{M} .

Semiflat The set of all projective lines on a plane E in \mathfrak{M} augmented with a maximal set of affine lines on E such that no two are parallel.

Semibundle A set

$$L_U(X) := \{L \in \mathcal{L} : U \in \overline{L} \text{ and } L \subseteq X\}$$

for some strong subspace X of \mathfrak{M} and $U \in \overline{X}$.

Tripod Three lines that meet in a point, are pairwise coplanar, and are not contained in a plane.

Proposition

- A set K is a maximal π -clique iff either
- K is a flat or
- K is a semibundle determined by at least 3-dimensional star or top

Proposition

- A set K is a maximal ρ -clique iff either
- K is a semiflat or
- *K* is a proper semibundle determined by at least 3-dimensional star or top

Definability of various π -cliques and ho-cliques

$$\begin{split} \boldsymbol{\Delta}_{\boldsymbol{\delta}}^{s}(L_{1},L_{2},\ldots,L_{s}) & \text{iff} \\ & \neq (L_{1},L_{2},\ldots,L_{s}), \ L_{i} \ \boldsymbol{\delta} \ L_{j} \ \text{for all} \ i,j=1,\ldots,s \ \text{and} \\ & \text{for all} \ M_{1},M_{2} \in \mathcal{L} \ \text{if} \ M_{1},M_{2} \ \boldsymbol{\delta} \ L_{1},L_{2},\ldots,L_{s} \ \text{then} \ M_{1} \ \boldsymbol{\delta} \ M_{2} \end{split}$$

- Δ³_π(L₁, L₂, L₃) iff L
 ₁, L
 ₂, L
 ₃ form a tripod or a triangle and are not contained in two distinct maximal π-cliques
- Δ³_ρ(L₁, L₂, L₃) iff L₁, L₂, L₃ form a tripod or a triangle, are not on an affine plane, in case they are on a punctured plane one of L₁, L₂, L₃ is an affine line, and are not contained in two distinct maximal π-cliques

$$\llbracket L_1, L_2, \ldots, L_s \rrbracket_{\boldsymbol{\delta}} := \{ L \in \mathcal{L} \colon L \; \boldsymbol{\delta} \; L_1, L_2, \ldots, L_s \}$$

$$\mathfrak{K}^s_{\boldsymbol{\delta}} := \Big\{ \llbracket L_1, L_2, \dots, L_s \rrbracket_{\boldsymbol{\delta}} \colon L_1, L_2, \dots, L_s \in \mathcal{L} \text{ and } \boldsymbol{\Delta}^s_{\boldsymbol{\delta}}(L_1, L_2, \dots, L_s) \Big\}$$

π -cliques spanned by three lines

Lemma

For each maximal π -clique K there is an integer s and there are lines $L_1, \ldots, L_s \in K$ such that

 $3 \leq s \leq r - k + 1$, $\Delta_{\pi}^{s}(L_{1}, \dots, L_{s})$, and $K = \llbracket L_{1}, \dots, L_{s} \rrbracket_{\pi}$. The class of all maximal π -cliques is definable in \mathfrak{M} :

$$\mathfrak{K}_{\boldsymbol{\pi}} := \bigcup \big\{ \mathfrak{K}_{\boldsymbol{\pi}}^{s} \colon 3 \leq s \leq r - k + 1 \big\}.$$

Lemma

The family \mathcal{K}^3_{π} consists of:

- (i) flats,
- (ii) top semibundles,
- (iii) semibundles contained in 3-dimensional stars,

(iv) semibundles contained in special ω -stars which do not intersect any other star in a 3-dimensional subspace.

Lemma

The family \mathcal{K}^3_{ρ} consists of:

- (i) projective flats,
- (ii) punctured semiflats,
- (iii) proper top semibundles,
- (iv) proper semibundles contained in 3-dimensional stars,
- (v) proper semibundles contained in special ω -stars.

Pencils of lines and parallel pencils in \mathfrak{M}

 $\mathbf{p}_{\pi}(L_1, L_2, L_3)$ iff $L_1, L_2, L_3 \in K$ for some $K \in \mathfrak{K}^3_{\pi}$ and $\neg \mathbf{\Delta}_{\pi}(L_1, L_2, L_3)$

 p_π(L₁, L₂, L₃) iff L₁, L₂, L₃ form a pencil of lines or a parallel pencil that is contained in a top or in a 3-dimensional star or in a special ω-star

 $\mathbf{p}_{\rho}(L_1, L_2, L_3)$ iff $L_1, L_2, L_3 \in K_1 \cap K_2$ for some flat K_1 and $K_2 \in \mathcal{K}^3_{\rho}$ with $K_2 \nsubseteq K_1$

• $\mathbf{p}_{\rho}(L_1, L_2, L_3)$ iff L_1, L_2, L_3 form a pencil of lines

Proper semibundles and proper top semibundles

The family

$${\mathcal B}_0:=ig\{{\mathcal K}\in{\mathcal K}_{oldsymbol{\delta}}\colon { t there is a pencil of lines } p ext{ such that } p\subset {\mathcal K} ext{ and } \dim({\mathcal K})\geq 3ig\}$$

defined in $\langle \mathcal{L}, \boldsymbol{\delta} \rangle$ coincides with the family of all proper top semibundles, the family of all proper semibundles contained in special ω -stars, or the union of these two families depending on whether tops, stars or all of them as projective or semiaffine spaces are at least 4-dimensional.

Proper top semibundles \mathcal{B} are distinguishable in \mathcal{B}_0 when:

$$4 \leq k - m$$

and

$$r_W \leq m+3$$
 or $r_W \leq k-2m-1$.

Grouping proper top semibundles into bundles

• For $K_i = L_{U_i}(X_i) \in \mathcal{B}$, i = 1, 2 we define:

$$\begin{split} \Upsilon(K_1,K_2) \quad \text{iff} \quad (\exists \ L_1,L_2 \in K_1)(\exists \ M_1,M_2 \in K_2) \\ & [L_1 \neq L_2 \land L_1 \ \delta \ M_1 \land L_2 \ \delta \ M_2]. \end{split}$$

Lemma

Let X_i be a top and $K_i = L_{U_i}(X_i)$, i = 1, 2. If $\Upsilon(K_1, K_2)$ and $K_1 \cap K_2 = \emptyset$, then $U_1 = U_2$.

Grouping proper top semibundles into bundles

 All tops are at least 4-dimensional spaces and thus no top is a punctured polar space.

Lemma

Let
$$X_i = [\Theta, B_i]_k$$
 be a top and $K_i = L_{U_i}(X_i)$, $i = 1, 2$.
If $B_1 \perp B_2$ and $U_1 = U_2$, then $\Upsilon(K_1, K_2)$ and $K_1 \cap K_2 = \emptyset$.

- Assume that the polar spine space $\mathbf{A}_{k+1,m}(\mathbf{Q}, W)$ is connected.
- Let $\overline{\Upsilon}$ be the transitive closure of Υ .

Lemma

Let
$$X_i$$
 be a top and $K_i = L_{U_i}(X_i)$, $i = 1, 2$.
If $U_1 = U_2$, then $\overline{\Upsilon}(K_1, K_2)$ and $K_1 \cap K_2 = \emptyset$.

$$\Upsilon_{\emptyset}(K_1, K_2)$$
 iff $\Upsilon(K_1, K_2), \Upsilon(K_2, K_1)$, and
either $K_1 \cap K_2 = \emptyset$ or $K_1 = K_2$

Lemma

 $\Upsilon_{\emptyset}(K_1, K_2)$ iff $U_1 = U_2$.

For $K \in \mathcal{B}$ we write

$$\Lambda_{\overline{\Upsilon_{\emptyset}}}(K) := \bigcup \big\{ K' \in \mathfrak{B} \colon \overline{\Upsilon_{\emptyset}}(K,K') \big\}.$$

Lemma

If U is a point and X is a top such that $U \in X$, then $\Lambda_{\overline{\Upsilon_{\emptyset}}}(\mathsf{L}_{U}(X)) = \{L \in \mathcal{L} \colon U \in L\}.$

K. Petelczyc, K. Prażmowski, M. Żynel* Geometry on the lines of polar spine spaces

Thank you for your attention