PJM - tłumacz języka migowego

  1. T. Brzeziński, M. Hryniewicka
    Translation Hopf algebras and Hopf heaps
    Algebr. Representat. Theor. 27 (2024), 1805-1819.
    DOI: 10.1007/s10468-024-10283-9
  2. T. Brzeziński
    Special Normalised Affine Matrices: An Example of a Lie Affgebra
    Geometric Methods in Physics XL, Workshop, Białowieża, Poland, 2023, (P. Kielanowski, D. Beltita, A. Dobrogowska, T. Goliński et al. Ed(s).), Trends in Mathematics , (publ. by) Birkhauser Verlag, 2024, pp. 115-125.
    DOI: 10.1007/978-3-031-62407-0_9
  3. M. Pankov, K. Petelczyc, M. Żynel
    Point-line geometries related to binary equidistant codes
    J. Combin. Theory Ser. A (2024), (to appear).
  4. R. Andruszkiewicz, T. Brzeziński, B. Rybołowicz
    Ideal ring extensions and trusses
    J. Algebra (2022), no. 600, 237-278.
    DOI: 10.1016/j.jalgebra.2022.01.038
  5. S. Breaz, T. Brzeziński
    The Baer-Kaplansky theorem for all abelian groups and modules
    Bull. Math. Sci. (2021), 1-12.
    DOI: 10.1142/S1664360721500053
  6. T. Brzeziński, B. Rybołowicz
    Congruence classes and extensions of rings with an application to braces
    Commun. Contemp. Math. 23 (2021), no. 4, 2050010.
    DOI: 10.1142/S0219199720500108
  7. T. Brzeziński, W. Szymański
    An algebraic framework for noncommutative bundles with homogeneous fibres
    Algebra and Number Theory 15 (2021), no. 1, 217-240.
    DOI: 10.2140/ant.2021.15.217
  8. T. Brzeziński, W. Szymański
    The quantum flag manifold SU_q(3)/\mathbb{t}^2 as an example of a noncommutative sphere bundle
    Indiana Univ. Math. J. 70 (2021), no. 5, 1945-1969.
    DOI: 10.1512/iumj.2021.70.8656
  9. M. Pankov, K. Petelczyc, M. Żynel
    Automorphisms and some geodesic properties of ortho-Grassmann graphs
    Electron. J. Combin. 28 (2021), no. 4, 1-21.
    DOI: 10.37236/10294
  10. M. Pankov, K. Petelczyc, M. Żynel
    Generalized Grassmann graphs associated to conjugacy classes of finite-rank self-adjoint operators
    Linear Algebra Appl. 627 (2021), 1-23.
    DOI: 10.1016/j.laa.2021.06.004
  11. K. Petelczyc
    Correction to: Configurational axioms derived from Möbius configurations
    Acta Math. Hungar. 163 (2021), no. 1, 334.
    DOI: 10.1007/s10474-020-01127-1
  12. K. Petelczyc, K. Prażmowski
    Multiplied configurations induced by quasi difference sets
    Bull. Iranian Math. Soc. 47 (2021), no. 1, 111-133.
    DOI: 10.1007/s41980-020-00370-0
  13. K. Petelczyc, K. Prażmowski, M. Żynel
    Geometry of the parallelism in polar spine spaces and their line reducts
    Ars Math. Contemp. 20 (2021), 151-170.
    DOI: 10.26493/1855-3974.2201.b65
  14. M. Prażmowska, K. Prażmowski
    Configurations representing a skew perspective; a classification of (15_4 20_3)-configurations reflecting abstract properties of a perspective between tetrahedrons
    Bull. Inst. Combin. Appl. 91 (2021), 41-79.
  15. B. Rybołowicz, T. Brzeziński, S. Mereta
    From pre-trusses to skew braces
    Publ. Mat. (2021), (to appear, https://arxiv.org/abs/2007.05761).
  16. T. Brzeziński
    Trusses: Paragons, ideals and modules
    J. Pure Appl. Algebra 224 (2020), no. 6, 1-39.
    DOI: 10.1016/j.jpaa.2019.106258
  17. T. Brzeziński, J. Gaunt, A. Schenkel
    On the relationship between classical and deformed Hopf fibrations
    Symmetry Integrability Geom. Methods Appl. 16 (2020), 1-29.
    DOI: 10.3842/SIGMA.2020.008
  18. T. Brzeziński, S. Koenig, J. Külshammer
    From quasi-hereditary algebras with exact Borel subalgebras to directed bocses
    Bull. London Math. Soc. 52 (2020), no. 2, 367-378.
    DOI: 10.1112/blms.12331
  19. T. Brzeziński, B. Rybołowicz
    Modules over trusses versus modules over rings: Direct sums and free modules
    Algebr. Representat. Theor. (2020), (on-line first).
    DOI: 10.1007/s10468-020-10008-8
  20. K. Petelczyc, K. Prażmowski, M. Żynel
    Geometry on the lines of polar spine spaces
    Aequationes Math. 94 (2020), no. 5, 829-846.
    DOI: 10.1007/s00010-020-00733-2
  21. K. Prażmowski, M. Żynel
    Metric structures imposed on Grassmannians
    Beitr. Algebra Geom. 61 (2020), no. 3, 507-513.
    DOI: 10.1007/s13366-019-00480-9
  22. M. Almulhem, T. Brzeziński
    Skew Derivations on Down-up Algebras
    Geometric Methods in Physics XXXVI, Workshop and Summer School, Białowieża, Poland, 2017, (P. Kielanowski, A. Odzijewicz, E. Previato Ed(s).), Trends in Mathematics , (publ. by) Birkhauser Verlag, 2019, pp. 59-67.
    DOI: 10.1007/978-3-030-01156-7_7
  23. A. Bazylewska-Zejer*, M. Prażmowska, K. Prażmowski
    Configurations related to combinatorial Veronesians representing a skew perspective
    arXiv.org (2019), (on-line first).
  24. T. Brzeziński
    Trusses: Between braces and rings
    Trans. Amer. Math. Soc. 372 (2019), 4149-4176.
    DOI: 10.1090/tran/7705
  25. T. Brzeziński, L. Dąbrowski, A. Sitarz
    On twisted reality conditions
    Lett. Math. Phys 109 (2019), no. 3, 643-659.
    DOI: 10.1007%2Fs11005-018-1120-x
  26. T. Brzeziński, W. Szymański
    On the quantum flag manifold SUq(3)/T2
    Geometric Methods in Physics XXXVII, Workshop and Summer School, Białowieża, Poland, 2018, (P. Kielanowski, A. Odzijewicz, E. Previato Ed(s).), Trends in Mathematics , (publ. by) Birkhauser Verlag, 2019, pp. 129-139.
    DOI: 10.1007/978-3-030-34072-8_13
  27. K. Petelczyc, M. Żynel
    The complement of a subspace in a classical polar space
    Ars Math. Contemp. 17 (2019), no. 2, 447-454.
    DOI: 10.26493/1855-3974.1917.ea5
  28. K. Prażmowski
    Hyperplanes in Configurations, decompositions, and Pascal Triangle of Configurations
    arXiv.org (2019), (on-line first).
  29. K. Prażmowski, M. Żynel
    Affine semipolar spaces
    J. Geom. 110:37 (2019), no. 2, 1-20.
    DOI: 10.1007/s00022-019-0494-y
  30. M. Almulhem, T. Brzeziński
    Skew derivations on generalized Weyl algebras
    J. Algebra 493 (2018), 194-235.
    DOI: 10.1016/j.jalgebra.2017.09.018
  31. T. Brzeziński
    Differential and Integral Forms on Non-commutative Algebras
    Geometric Methods in Physics XXXV, Workshop and Summer School, Białowieża, Poland, June 26 - July 2, 2016, (P. Kielanowski, A. Odzijewicz, E. Previato Ed(s).), Trends in Mathematics , (publ. by) Birkhauser Verlag, 2018, pp. 257-261.
    DOI: 10.1007/978-3-319-63594-1_25
  32. T. Brzeziński
    Towards semi-trusses
    Rev. Roumaine Math. Pures Appl. 63 (2018), no. 2, 75-89.
  33. T. Brzeziński, L. Dąbrowski
    A Curious Differential Calculus on the Quantum Disc and Cones
    Geometric Methods in Physics XXXV, Workshop and Summer School, Białowieża, Poland, June 26 - July 2, 2016, (P. Kielanowski, A. Odzijewicz, E. Previato Ed(s).), Trends in Mathematics , (publ. by) Birkhauser Verlag, 2018, pp. 25-32.
    DOI: 10.1007/978-3-319-63594-1_4
  34. T. Brzeziński, Ch. Lomp
    Differential smoothness of skew polynomial rings
    J. Pure Appl. Algebra 222 (2018), no. 9, 2413-2426.
    DOI: 10.1016/j.jpaa.2017.09.020
  35. T. Brzeziński, W. Szymański
    The C∗-algebras of quantum lens and weighted projective spaces
    J. Noncommut. Geom. 12 (2018), no. 1, 195-215.
    DOI: 10.4171/JNCG/274
  36. K. Maszkowski*, M. Prażmowska, K. Prażmowski
    Configurations representing a skew perspective
    arXiv.org (2018), (on-line first).
  37. K. Petelczyc, M. Prażmowska, K. Prażmowski, M. Żynel
    Hyperplanes, parallelism and related problems in Veronese spaces
    Turk. J. Math. 42 (2018), no. 3, 1221-1235.
    DOI: 10.3906/mat-1703-55
  38. K. Petelczyc, M. Żynel
    Geometry on the lines of spine spaces
    Aequationes Math. 92 (2018), no. 2, 385-400.
    DOI: 10.1007/s00010-017-0523-6
  39. M. Prażmowska, K. Prażmowski
    On a class of (15_4 20_3)-configurations reflecting abstract properties of a perspective between tetrahedrons
    arXiv.org (2018), (on-line first).
  40. T. Brzeziński, A. Sitarz
    Smooth geometry of the noncommutative pillow, cones and lens spaces
    J. Noncommut. Geom. 11 (2017), no. 2, 413-449.
    DOI: 10.4171/JNCG/11-2-1
  41. K. Petelczyc
    On some generalization of the Möbius configuration
    Ars Math. Contemp. 13 (2017), no. 1, 107-123.
    DOI: 10.26493/1855-3974.765.46c
  42. K. Petelczyc, M. Żynel
    Affinization of Segre products of partial linear spaces
    Bull. Iranian Math. Soc. 43 (2017), no. 5, 1101-1126.
  43. T. Brzeziński
    Curved Rota-Baxter systems
    Bull. Belg. Math. Soc. Simon Stevin 23 (2016), no. 5, 713-720.
  44. T. Brzeziński
    Noncommutative differential geometry of generalized Weyl algebras
    Symmetry Integrability Geom. Methods Appl. 12 (2016), 1-18.
    DOI: 10.3842/SIGMA.2016.059
  45. T. Brzeziński
    Rota-Baxter systems, dendriform algebras and covariant bialgebras
    J. Algebra 460 (2016), 1-25.
    DOI: 10.1016/j.jalgebra.2016.04.018
  46. T. Brzeziński, N. Ciccoli, L. Dabowski, A. Sitarz
    Twisted Reality Condition for Dirac Operators
    Math. Phys. Anal. Geom. 19 (2016), no. 3, 1-11.
    DOI: 10.1007/s11040-016-9219-8
  47. K. Petelczyc, M. Żynel
    Coplanarity of lines in projective and polar Grassmann spaces
    Aequationes Math. 90 (2016), no. 3, 607-623.
    DOI: 10.1007/s00010-015-0387-6
  48. M. Prażmowska, K. Prażmowski
    Binomial partial Steiner triple systems containing complete graphs
    Graphs Combin. 32 (2016), no. 5, 2079-2092.
    DOI: 10.1007/s00373-016-1681-3
  49. E. Błaszko*, M. Prażmowska, K. Prażmowski
    Relative complements and a `switch'-classification of simple graphs
    arXiv.org (2015), (on-line first).
  50. K. Petelczyc, M. Prażmowska, K. Prażmowski
    A complete classification of the (15_4 20_3 ) -configurations with at least three K_5 -graphs
    Discrete Math. 338 (2015), no. 7, 1243-1251.
    DOI: 10.1016/j.disc.2015.02.002
  51. K. Petelczyc, M. Prażmowska, K. Prażmowski
    Binomial partial Steiner triple systems with complete graphs: structural problems
    arXiv.org (2015), (on-line first).
  52. K. Petelczyc, M. Prażmowska, K. Prażmowski
    Configurational axioms derived from M{\"o}bius configurations
    Acta Math. Hungar. 145 (2015), no. 2, 304-308.
    DOI: 10.1007/s10474-015-0490-0
  53. K. Petelczyc, M. Żynel
    The complement of a point subset in a projective space and a Grassmann space
    J. Appl. Logic 13 (2015), no. 3, 169-187.
    DOI: 10.1016/j.jal.2015.02.002
  54. M. Prażmowska, K. Prażmowski
    Binomial partial Steiner triple systems containing complete graphs
    arXiv.org (2014), (on-line first).
  55. M. Prażmowska, K. Prażmowski
    Operation of weaving partial Steiner triple systems
    arXiv.org (2014), (on-line first).
  56. M. Prażmowska, K. Prażmowski
    Projective realizability of Veronese Spaces
    Recent Results in Pure and Applied Mathematics, Podlasie 2014, (A. Gomolińska, A. Grabowski, M. Hryniewicka, M. Kacprzak, E. Schmeidel Ed(s).), (publ. by) Politechnika Białostocka, 2014, pp. 61-69.
  57. M. Prażmowska, K. Prażmowski
    The Cox, Clifford, Möbius, Miquel, and other related configurations and their generalizations
    arXiv.org (2014), (on-line first).
  58. M. Prażmowska, K. Prażmowski
    The Cremona-Richmond Configuration revisited and generalized
    arXiv.org (2014), (on-line first).
  59. M. Żynel
    Complements of Grassmann substructures in projective Grassmannians
    Aequationes Math. 88 (2014), no. 1-2, 81-96.
    DOI: 10.1007/s00010-013-0210-1
  60. J. Konarzewski*, M. Żynel
    A note on orthogonality of subspaces in Euclidean geometry
    J. Appl. Logic 11 (2013), no. 2, 169-173.
    DOI: 10.1016/j.jal.2013.01.001
  61. K. Prażmowski, A. Sulima*
    Chain geometry determined by the affine group
    Result. Math. 63 (2013), no. 3-4, 1409-1420.
    DOI: 10.1007/s00025-012-0293-3
  62. E. Michalak*, K. Prażmowski
    Grassmannians of spheres in Moebius and in Euclidean spaces
    Note Mat. 32 (2012), no. 2, 13-21.
    DOI: 10.1285/i15900932v32n2p13
  63. K. Petelczyc, M. Prażmowska, K. Prażmowski, M. Żynel
    A note on characterizations of affine and Hall triple systems
    Discrete Math. 312 (2012), no. 15, 2394-2396.
    DOI: 10.1016/j.disc.2012.03.037
  64. K. Petelczyc, K. Prażmowski
    Multiplied configurations characterized by their closed substructures
    arXiv.org (2012), (on-line first).
  65. K. Petelczyc, K. Prażmowski
    Multiplied configurations, series induced by quasi difference sets
    arXiv.org (2012), (on-line first).
  66. M. Prażmowska, K. Prażmowski, M. Żynel
    Projective symplectic geometry on regular subspaces; Grassmann spaces over symplectic copolar spaces
    arXiv.org (2012), (on-line first).
  67. K. Prażmowski, M. Żynel
    Affine polar spaces derived from polar spaces and Grassmann structures defined on them
    arXiv.org (2012), (on-line first).
  68. K. Prażmowski, M. Żynel
    Affine polar spaces derived from symplectic spaces, their geometry and representations: alternating semiforms
    arXiv.org (2012), (on-line first).
  69. K. Prażmowski, M. Żynel
    Grassmannians of lines defined in the geometry of a pseudo-polarity
    arXiv.org (2012), (on-line first).
  70. M. Żynel
    Correlations of spaces of pencils
    J. Appl. Logic 10 (2012), no. 2, 187-198.
    DOI: 10.1016/j.jal.2012.02.002
  71. M. Prażmowska, K. Prażmowski
    Semi-Pappus configurations; combinatorial generalizations of the Pappus configuration
    Des. Codes Cryptogr. 61 (2011), no. 1, 91-103.
    DOI: 10.1007/s10623-010-9440-6
  72. K. Prażmowski, M. Żynel
    Orthogonality of subspaces in metric-projective geometry
    Adv. Geom. 11 (2011), no. 1, 103-116.
    DOI: 10.1515/advgeom.2010.041
  73. K. Petelczyc, M. Prażmowska
    Twisted Fano spaces and their classification, linear completions of systems of triangle perspectives
    Des. Codes Cryptogr. 54 (2010), no. 3, 241-251.
    DOI: 10.1007/s10623-009-9321-z
  74. M. Prażmowska, K. Prażmowski, M. Żynel
    Grassmann spaces of regular subspaces
    J. Geom. 97 (2010), no. 1-2, 99-123.
    DOI: 10.1007/s00022-010-0040-4
  75. K. Prażmowski, M. Żynel
    Possible primitive notions for geometry of spine spaces
    J. Appl. Logic 8 (2010), no. 3, 262-276.
    DOI: 10.1016/j.jal.2010.05.001
  76. K. Petelczyc, M. Prażmowska
    -3$-configurations and projective realizability of multiplied configurations.
    Des. Codes Cryptogr. 51 (2009), no. 1, 45-54.
    DOI: 10.1007/s10623-008-9242-2
  77. M. Prażmowska, K. Prażmowski, M. Żynel
    Affine polar spaces, their Grassmannians, and adjacencies
    Math. Pannon. 20 (2009), no. 1, 37-59.
  78. M. Prażmowska, K. Prażmowski, M. Żynel
    Metric affine geometry on the universe of lines
    Linear Algebra Appl. 430 (2009), no. 11-12, 3066-3079.
    DOI: 10.1016/j.laa.2009.01.028
  79. K. Prażmowski, M. Żynel
    Segre subproduct, its geometry, automorphisms and examples
    J. Geom. 92 (2009), no. 1-2, 117-142.
    DOI: 10.1007/s00022-009-1951-9
  80. J. Gorodowienko*, M. Prażmowska, K. Prażmowski
    Elementary characterizations of some classes of reducts of affine spaces
    J. Geom. 89 (2008), no. 1-2, 17-33.
    DOI: 10.1007/s00022-008-2056-6
  81. M. Prażmowska, K. Prażmowski
    Combinatorial Veronese structures, their geometry, and problems of embeddability
    Result. Math. 51 (2008), no. 3-4, 275-308.
    DOI: 10.1007/s00025-007-0279-8
  82. M. Prażmowska, K. Prażmowski, M. Żynel
    Euclidean geometry of orthogonality of subspaces
    Aequationes Math. 76 (2008), no. 1-2, 151-167.
    DOI: 10.1007/s00010-007-2911-9
  83. B. Jankowska*, M. Prażmowska, K. Prażmowski
    Line graphs, their Desarguesian closures, and corresponding groups of automorphisms
    Demonstratio Math. 40 (2007), no. 4, 971-986.
    DOI: 10.1515/dema-2007-0420
  84. K. Petelczyc, K. Prażmowski, A. Łupiński
    Tresses of polygons
    Demonstratio Math. 40 (2007), no. 2, 419-439.
    DOI: 10.1515/dema-2007-0214
  85. K. Prażmowski, K. Radziszewski
    Regular direct products of affine partial linear spaces
    J. Geom. 87 (2007), no. 1-2, 120-142.
    DOI: 10.1007/s00022-007-1875-1
  86. I. Golonko*, M. Prażmowska, K. Prażmowski
    Adjacency in generalized projective Veronese spaces
    Abh. Math. Sem. Univ. Hamburg 76 (2006), 99-114.
    DOI: 10.1007/BF02960859
  87. A. Kozłowski*, K. Prażmowski
    Configurations defined on finite rings
    Glas. Mat. Ser. III 41 (2006), no. 1, 115-140.
  88. M. Pankov, K. Prażmowski, M. Żynel
    Geometry of polar Grassmann spaces
    Demonstratio Math. 39 (2006), no. 3, 625-637.
    DOI: 10.1515/dema-2006-0318
  89. K. Petelczyc, K. Prażmowski
    Multiplied configurations, series induced by correlations
    Result. Math. 49 (2006), no. 3-4, 313-337.
    DOI: 10.1007/s00025-006-0227-z
  90. M. Prażmowska, K. Prażmowski
    Grassmann spaces over hyperbolic and quasi hyperbolic spaces
    Math. Pannon. 17 (2006), no. 2, 195-220.
  91. M. Prażmowska, K. Prażmowski
    Some generalization of Desargues and Veronese configurations
    Serdica Math. J. 32 (2006), no. 2-3, 185-208.
  92. M. Prażmowska, K. Prażmowski
    The convolution of a partial Steiner triple system and a group
    J. Geom. 85 (2006), no. 1-2, 90-109.
    DOI: 10.1007/s00022-006-0051-3
  93. K. Prażmowski, M. Żynel
    Extended parallelity in spine spaces and its geometry
    J. Geom. 85 (2006), no. 1-2, 110-137.
    DOI: 10.1007/s00022-005-0032-y
  94. V. Pambuccian, K. Prażmowski, K. Sakowicz
    Defining co-punctuality in terms of line-orthogonality in plane hyperbolic geometry
    Acta Math. Hungar. 109 (2005), no. 4, 289-293.
    DOI: 10.1007/s10474-005-0248-1
  95. M. Pankov, K. Prażmowski, M. Żynel
    Transformations preserving adjacency and base subsets of spine spaces
    Abh. Math. Sem. Univ. Hamburg 75 (2005), 21-50.
    DOI: 10.1007/BF02942034
  96. K. Petelczyc
    Series of inscribed n-gons and rank 3 configurations
    Beitr. Algebra Geom. 46 (2005), no. 1, 283-300.
  97. K. Prażmowski, K. Radziszewski
    Direct product of affine partial linear spaces, general approach
    J. Geom. 83 (2005), no. 1/2, 175-195.
    DOI: 10.1007/s00022-005-0018-9
  98. K. Prażmowski, M. Żynel
    General projections in spaces of pencils
    Beitr. Algebra Geom. 46 (2005), no. 2, 587-608.
  99. A. Matraś, A. Mierzejewska*, K. Prażmowski
    Some chain geometries determined by transformation groups
    Result. Math. 46 (2004), no. 3-4, 251-270.
    DOI: 10.1007/BF03322886
  100. A. Naumowicz, K. Prażmowski
    The geometry of generalized Veronese spaces
    Result. Math. 45 (2004), no. 1-2, 115-136.
    DOI: 10.1007/BF03323002
  101. K. Prażmowski
    Multidimensional euclidean geometry of cycles and axes
    Algebra, Geom. Appl. Semin. Proc. 3-4 (2004), 5-18.
  102. K. Prażmowski
    Projections of cylinders and generalization of the parabeln model of affine geometry
    Demonstratio Math. 37 (2004), no. 1, 177-189.
    DOI: 10.1515/dema-2004-0118
  103. K. Prażmowski, M. Łapiński*
    On set-theoretic and cyclic representation of the structure of barycentres
    Demonstratio Math. 37 (2004), no. 3, 619-638.
    DOI: 10.1515/dema-2004-0313
  104. K. Prażmowski, M. Żynel
    Geometry of the structure of linear complements
    J. Geom. 79 (2004), no. 1-2, 177-189.
    DOI: 10.1007/s00022-003-1446-z
  105. K. Prażmowski, M. Żynel
    Affine geometry of spine spaces
    Demonstratio Math. 36 (2003), no. 4, 957-969.
    DOI: 10.1515/dema-2003-0420
  106. K. Prażmowski, M. Żynel
    Automorphisms of spine spaces
    Abh. Math. Sem. Univ. Hamburg 72 (2002), 59-77.
    DOI: 10.1007/BF02941665
  107. Cz. Byliński, M. Żynel
    Cages - the external approximation of Jordan's curve
    Form. Math. 9 (2001), no. 1, 19-24.
  108. A. Naumowicz, K. Prażmowski
    On Segre's product of partial line spaces and spaces of pencils
    J. Geom. 71 (2001), no. 1-2, 128-143.
    DOI: 10.1007/s00022-001-8557-1
  109. K. Prażmowski
    On a construction of affine Grassmannians and spine spaces
    J. Geom. 72 (2001), no. 1-2, 172-187.
    DOI: 10.1007/s00022-001-8579-8
  110. M. Żynel
    Finite Grassmannian geometries
    Demonstratio Math. 34 (2001), no. 1, 145-160.
    DOI: 10.1515/dema-2001-0118
  111. H. Oryszczyszyn
    Inversive closure of metric affine space and its automorphisms
    Demonstratio Math. 32 (1999), no. 1, 151-155.
    DOI: 10.1515/dema-1999-0116
  112. K. Prażmowski
    Extensions of complete graphs to regular partial linear spaces
    Geom. Wykr. i Graf. Inż. 5 (1999), 63-72.
  113. K. Prażmowski, K. Radziszewski
    Projections and projective collineations in semiaffine line spaces
    Rend. Sem. Mat. Messina Ser. II 21 (1999), no. 6, 33-52.
  114. M. Żynel
    The Pascal theorem for quadrics in spaces of pencils
    Geom. Wykr. i Graf. Inż. 5 (1999), 73-85.
  115. H. Oryszczyszyn, K. Prażmowski
    On projections in projective spaces
    Demonstratio Math. 31 (1998), no. 1, 193-202.
    DOI: 10.1515/dema-1998-0124
  116. H. Oryszczyszyn, K. Prażmowski
    On projections in spaces of pencils
    Demonstratio Math. 31 (1998), no. 4, 825-833.
    DOI: 10.1515/dema-1998-0412
  117. H. Oryszczyszyn, A. Truchel-Kozłowska
    Characterization of some group of maps of affine space
    Demonstratio Math. 31 (1998), no. 4, 783-787.
    DOI: 10.1515/dema-1998-0407
  118. M. Żynel
    Komputerowo wspomagana geometria: weryfikacja, automatyzacja, wizualizacja
    Zeszyty Nauk. Polit. Śląskiej - Geometria i Grafika Inżynierska 2 (1998), 153-167.
  119. Cz. Byliński, M. Żynel
    Properties of relational structures, posets, lattices and maps
    Form. Math. 6 (1997), no. 1, 123-130.
  120. H. Oryszczyszyn
    On a general theory of ordered trapezium spaces
    Demonstratio Math. 30 (1997), no. 4, 729-734.
  121. M. Żynel
    The equational characterization of continuous lattices
    Form. Math. 6 (1997), no. 2, 199-205.
  122. A. Guzowski, M. Żynel
    $T_0$ topological spaces
    Form. Math. 5 (1996), no. 1, 75-77.
  123. M. Żynel
    The Steinitz theorem and the dimension of a vector space
    Form. Math. 5 (1996), no. 3, 423-428.
  124. K. Prażmowski
    On some general properties of oriented congruence
    Demonstratio Math. 28 (1995), no. 2, 369-382.
  125. K. Prażmowski, K. Radziszewski
    A characterization of a class of Laguerre spaces
    Zeszyty Nauk. Geom. (1995), no. 21, 3-39.
  126. K. Poreda*, K. Prażmowski
    On some families of symmetries in affine spaces and on involutive generators of projective plane groups
    Demonstratio Math. 27 (1994), no. 1, 115-122.
  127. E. Kusak
    A characterization of some incidence hyperbolic planes
    Zeszyty Nauk. Geom. 20 (1993), 53-60.
  128. E. K. Kusak
    A geometric construction of a norm function in metric vector spaces
    Zeszyty Nauk. Geom. 20 (1993), 47-52.
  129. M. Muzalewski
    Skew field of proportions in dimension-free affine geometry
    Zeszyty Nauk. Geom. 20 (1993), 39-46.
  130. M. Muzalewski
    Vector products in affine geometry
    Zeszyty Nauk. Geom. 20 (1993), 29-37.
  131. M. Muzalewski, K. Prażmowski
    Axiomatic investigations on symplectic geometry
    Demonstratio Math. 26 (1993), no. 2, 295-306.
  132. K. Prażmowski
    On a class of semicorrelations in projective spaces
    Zeszyty Nauk. Geom. 20 (1993), 77-86.
  133. K. Prażmowski
    On some special classes of homogeneous metric affine planes
    Zeszyty Nauk. Geom. 20 (1993), 61-67.
  134. K. Prażmowski
    On some strange orthogonality relations
    Zeszyty Nauk. Geom. 20 (1993), 69-75.
  135. E. Kusak, W. Leończuk
    An algebraic characterization of finite-dimension symplectic spaces
    Zeszyty Nauk. Geom. 19 (1991), 47-53.
  136. W. Leończuk, K. Prażmowski
    Projective quasiquadrangles and fan spaces
    Zeszyty Nauk. Geom. 19 (1991), 33-45.
  137. K. Prażmowski
    A characterization of some classes of weak metric-affine planes defined in terms of groups of orthogonalizations
    Zeszyty Nauk. Geom. 19 (1991), 3-16.
  138. K. Prażmowski
    On extendability of weak metric-affine planes to a space
    Zeszyty Nauk. Geom. 19 (1991), 17-31.
  139. M. Muzalewski, K. Prażmowski
    On some geometric and algebraic structures associated with the collineation group of a flag
    Zeszyty Nauk. Geom. 18 (1990), 41-51.
  140. H. Oryszczyszyn, M. Prażmowska, K. Prażmowski
    Classical and Non--classical Pasch Configurations in Ordered Affine Planes
    Form. Math. 1 (1990), no. 4, 677-680.
  141. M. Prażmowska, K. Prażmowski
    Remarks concerning foundations of ordered affine geometry
    Bull. Polish Acad. Sci. Math. 38 (1990), no. 1-12, 113-116.
  142. K. Prażmowski
    An axiom system for the class of direct equiaffinities in Fano-Desrguesian affine planes
    Zeszyty Nauk. Geom. 18 (1990), 23-30.
  143. K. Prażmowski
    General metric-projective planes as algebras
    Zeszyty Nauk. Geom. 18 (1990), 31-39.
  144. K. Prażmowski
    Multidimensional geometrical congruences as primitive notions for Euclidean geometry
    Bull. Polish Acad. Sci. Math. 38 (1990), no. 1-12, 99-105.
  145. H. Oryszczyszyn, K. Prażmowski
    On a characterization of weak metric-affine planes admitting reflections
    Zeszyty Nauk. Uniw. Warsz. F. w B-stoku 69 (1989), 75-86.
  146. K. Prażmowski
    An axiomatic description of the Strambach planes
    Geom. Dedicata 32 (1989), no. 2, 125-156.
    DOI: 10.1007/BF00147427
  147. K. Prażmowski
    Geometry over groups with central symmetries as the only involutions
    Mitt. Math. Sem. Giessen (1989), no. 193, 107.
  148. K. Prażmowski
    On the incidence symplectic and the general metric-projective geometries
    Zeszyty Nauk. Uniw. Warsz. F. w B-stoku 69 (1989), 65-74.
  149. E. Kusak
    Orthogonality relations on projective planes
    Zeszyty Nauk. Geom. 17 (1988), 43-53.
  150. E. Kusak, K. Prażmowski
    Non-Pappian Euclidean space does not exist
    Bull. Polish Acad. Sci. Math. 36 (1988), no. 9-10, 567-569.
  151. H. Oryszczyszyn
    An axiom system for dendrite betweenness relation and associated midpoint algebras
    Zeszyty Nauk. Uniw. Warsz. F. w B-stoku 7 (1988), no. 59, 91-97.
  152. H. Oryszczyszyn
    Barycentre Algebra in Affine Geometry
    Zeszyty Nauk. Uniw. Warsz. F. w B-stoku 7 (1988), no. 59, 83-90.
  153. M. Prażmowska, K. Prażmowski
    An axiom system describing degenerate hyperbolic planes in terms of directed parallelity
    Demonstratio Math. 21 (1988), no. 4, 913-941.
  154. K. Prażmowski
    On affine localizations of Minor Desargues Axiom and related affine axioms
    Bull. Polish Acad. Sci. Math. 36 (1988), no. 9-10, 571-581.
  155. K. Prażmowski
    On the geometry of oriented hyperplanes in multidimensional metric-projective spaces
    Demonstratio Math. 21 (1988), no. 4, 885-896.
  156. K. Prażmowski
    Some remarks about geometrical structure of exterior hyperbolic plane
    Zeszyty Nauk. Geom. 17 (1988), 97-107.
  157. E. Kusak, K. Prażmowski
    On affine reducts of Desargues Axiom
    Bull. Polish Acad. Sci. Math. 35 (1987), no. 1-2, 77-86.
  158. H. Oryszczyszyn
    Ternary geometrical operations in Euclidean geometry
    Demonstratio Math. 20 (1987), no. 3-4, 335-340.
  159. K. Prażmowski
    Equidistance relations in Minkowski planes
    Zeszyty Nauk. Geom. 16 (1987), 67-71.
  160. K. Prażmowski
    Groups of squares and halfequivalences in geometry
    Colloq. Math. 53 (1987), no. 2, 157-168.
  161. K. Prażmowski
    On some incidence structures on the universe of lines of ordered Minkowski planes
    Zeszyty Nauk. Geom. 16 (1987), 73-81.
  162. K. Prażmowski
    On the structure of the group of isometries of a degenerate hyperbolic plane and a geometry arising from it
    Glas. Mat. Ser. III 22(42) (1987), no. 2, 407-419.
  163. K. Prażmowski
    The notion of directed field as an algebraic counterpart of ordered Euclidean geometry
    Demonstratio Math. 20 (1987), no. 3-4, 561-566.
  164. K. Prażmowski, J. Zabilski
    On a general form of the Bundle Theorem
    Zeszyty Nauk. Geom. 16 (1987), 83-92.
  165. G. Lewandowski, K. Prażmowski
    On affine-free theory of orthonormal base
    Demonstratio Math. 19 (1986), no. 3, 685-691.
  166. G. Lewandowski, K. Prażmowski
    On the Congruence in Bundles
    Zeszyty Nauk. Geom. 15 (1986), 39-48.
  167. G. Lewandowski, K. Prażmowski
    One-dimensional elliptic bundle of symmetries or Euclidean bundle of copunctual lines
    Zeszyty Nauk. Geom. 15 (1986), 27-38.
  168. H. Oryszczyszyn
    Barycentre Algebras
    Bull. Polish Acad. Sci. Math. 34 (1986), no. 7-8, 417-422.
  169. K. Prażmowski
    Incidence structures with hyperbolas on affine plane
    Zeszyty Nauk. Geom. 15 (1986), 49-58.
  170. K. Prażmowski
    On some incidence structures on Lobatschevsky planes
    Zeszyty Nauk. Geom. 15 (1986), 73-83.
  171. K. Prażmowski
    Relations on lines in hyperbolic geometry and hyperbolic isometry groups acting on lines
    Zeszyty Nauk. Geom. 15 (1986), 59-72.
  172. K. Prażmowski
    Town metric, its similarity group, and associated incidence structures
    Zeszyty Nauk. Geom. 15 (1986), 85-92.
  173. J. Zabilski
    On the weak spherical incidence
    Zeszyty Nauk. Geom. 15 (1986), 111-114.
  174. K. Prażmowski
    On the group of similarities in classical geometrical planes
    Demonstratio Math. 18 (1985), no. 4, 933-943.
  175. K. Prażmowski
    On the isosceles trapezium configuration in an abstract way
    Bull. Polish Acad. Sci. Math. 33 (1985), no. 3-4, 159-164.
  176. T. Bromek, M. Moszyńska, K. Prażmowski
    Concerning basic notions of the measurement theory
    Czechoslovak Math. J. 34 (1984), no. 4, 570-587.
  177. M. Grochowska, K. Prażmowski
    Dimension free ordered affine geometry and its axiomatics
    Bull. Polish Acad. Sci. Math. 32 (1984), no. 1-2, 77-80.
  178. K. Prażmowski
    Classical geometrical groups acting on geometrical objects
    Zeszyty Nauk. Geom. 14 (1984), 25-34.
  179. K. Prażmowski
    Congruence versus incidence on the Euclidean plane
    Zeszyty Nauk. Geom. 14 (1984), 35-40.
  180. K. Prażmowski
    Few remarks on the algebraic construction of a pencil and a congruence
    Demonstratio Math. 17 (1984), no. 4, 817-825.
  181. K. Prażmowski
    The hyperbolic geometry with horocycles as primitive notions
    Zeszyty Nauk. Geom. 14 (1984), 41-46.
  182. E. Kusak, K. Prażmowski
    The analytical geometry without coordinates
    Zeszyty Nauk. Geom. 13 (1983), 45-56.
  183. K. Prażmowski
    Various systems of primitive notions for Euclidean geometry based on the notion of circle
    Bull. Polish Acad. Sci. Math. 31 (1983), no. 1-2, 23-29.
  184. K. Prażmowski, P. Rudnicki
    Mizar MSE primer
    Prace IPI PAN vol. 529, Polska Akademia Nauk, Warsaw, Poland, 1983.
©2022 Wszystkie prawa zastrzeżone.

W ramach naszego serwisu www stosujemy pliki cookies zapisywane na urządzeniu użytkownika w celu dostosowania zachowania serwisu do indywidualnych preferencji użytkownika oraz w celach statystycznych. Użytkownik ma możliwość samodzielnej zmiany ustawień dotyczących cookies w swojej przeglądarce internetowej. Więcej informacji można znaleźć w Polityce Prywatności Uniwersytetu w Białymstoku. Korzystając ze strony wyrażają Państwo zgodę na używanie plików cookies, zgodnie z ustawieniami przeglądarki.